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LETTER TO THE EDITOR 

Quantum spin systems: dynamical mean field renormalisation 
group approach 

J A Plascakt 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, 
UK 

Received 19 June 1984 

Abstract. The mean field renormalisation group approach is applied to the study of the 
static and dynamical critical properties of the spin-f anisotropic Heisenberg model in a 
transverse field. The critical surface and estimates of static and dynamical critical exponents 
are obtained for the one-, two-, and three-dimensional models. 

In this letter we treat the spin-f anisotropic Heisenberg model in a transverse field. 
The Hamiltonian can be defined as 

I 

where 77 ranges from 0 (Ising limit) to 1 (isotropic Heisenberg limit), J is the nearest- 
neighbour exchange interaction, R is the transverse field, and a’s are Pauli spin matrices. 
The sums run over spins on a d-dimensional lattice. 

In the Ising limit the Hamiltonian (1 )  reduces to that of the transverse Ising model. 
In one-dimension Pfeuty (1970) has exactly shown that this model exhibits a long-range 
order at zero temperature for R less than a critical value R,. Series expansions results 
in higher dimensions (Elliott and Wood 1971, Pfeuty and Elliott 1971, Yanase 1977) 
have shown that the effect of the transverse field is simply to shift the critical temperature 
without altering the critical exponents (provided the critical temperature remains 
non-zero). For transitions at zero temperature it has been proved that the critical 
behaviour of the d-dimensional transverse Ising model corresponds to that of the 
(d  + 1)-dimensional Ising model with R = 0 (Young 1975, Hertz 1976, Suzuki 1976). 
It is also known that the dynamical exponent z for the critical slowing down of the 
transverse Ising model at zero temperature is equal to 1 (Young 1975, Hertz 1976). 

At zero transverse field the model ( 1 )  reduces to the anisotropic Heisenberg model. 
This system has been recently treated by using a real space renormalisation group 
transformation (Suzuki and Takano 1979, Stinchcombe 1981, Caride et a1 1983). It 
has been shown that the critical temperature T, of the ferromagnetic transition decreases 
as a function of the anisotropy. In particular, in the isotropic Heisenberg limit T, 
vanishes for the two-dimensional model, while for the three-dimensional model T, 
remains finite. It has also been proved that the vanishing of T, for the two-dimensional 
isotropic Heisenberg model is an exact result (Mermin and Wagner 1966). 
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In order to study the dynamical critical properties of the model ( 1 )  we employ the 
mean field renormalisation group (MFRG) method. This method has been proposed 
by Indekeu et al (1982) for computing critical properties of lattice spin systems. It is 
based upon a comparison of the behaviour of clusters of different sizes in the presence 
of symmetry breaking boundary conditions (mean field) which simulate the effect of 
the surrounding spins in the infinite system. The MFRG has been successfully applied 
to the study of the static critical properties of ordered (Indekeu e? a1 1982, Slotte 1984) 
and disordered (Droz et a1 1982, Plascak 1984a) spin models and geometric phase 
transitions (De’Bell 1983). More recently, the MFRG has been applied to the study of 
the dynamical critical properties of classical kinetic Ising models (Indekeu et a1 1984). 
In the present letter we extend the MFRG to the study of the dynamical critical properties 
of quantum spin systems. 

We consider herein one- and two-spin clusters respectively, and we follow closely 
the procedure suggested by Indekeu er a1 (1982, 1984). In the one-spin cluster the 
single spin u, interacts with its c nearest neighbours, where c is the coordination 
number of the lattice. The z-component of these boundary spins is fixed to a time- 
dependent ‘effective magnetisation’ b,( t ) .  While mean field theory identifies b,(  r )  with 
the z-component of the average magnetisation m , ( t )  = ( U a ) ( f ) ,  the MFRG assumes that 
the effective magnetisation ‘scales’ in the same way. Since in the scaling regime the 
magnetisation is infinitesimal, b l (  t )  is assumed to be very small. The Hamiltonian of 
the one-spin cluster then reads 

In the linear response theory (see, for example, Kubo 1957) the Fourier transform of 
the average magnetisation in the z direction, m , ( t ) ,  is given by 

where xf‘ is the dynamical longitudinal susceptibility of the single spin in a transverse 
field and the variables are defined by a = Cl/J and K = J/k,T. For this one-spin 
cluster xf’ is easily evaluated, giving 

In the two-spin cluster, uI interacts directly with u2 and both uI and u2 interact 
with their (c - 1)  nearest neighbours fixed to a time-dependent effective magnetisation 
b 2 ( t ) .  The Hamiltonian then reads 

H2 = - J [ u ~ u ;  + .r7(a;a; +o;a;)] -R(a; +U;) - (c  - l)Jb,( r ) (Uf  +U;). ( 5 )  

Similarly, in the linear response theory the Fourier transform of the average magnetisa- 
tion in the z direction, m 2 ( t )  =f(a f+u;) ( t ) ,  is given by 

Diagonalisation of the time-independent part of the Hamiltonian ( 5 )  is simple. Without 
entering into the details of the calculation we give below just the final expression for 
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the dynamical susceptibility of H 2 :  

XY(K a, 17, U) = 2(c  - 1 )  
o2 

x [ A ( l +  [J(AI  - h 4 ) 1 2 - 0 2  ) + B ( l +  [J(b - A 4 ) 1 2  - 0 

u2 

where 

A = 4a2(e-KA4 - e-KAl)/(Al - h4)A, 

B =462(e-KA2-e-KA4)/(h4-h2)A, 

(7)  

A3 = 1 + 2 ~ ,  h 4 =  -1, 

i = l  

We impose now a scaling relation of the form 

m2(K,  a, 17, U )  = L - d + y H + r  m , ( K ’ ,  ut, L‘o) (9) 

between such approximate magnetisations, where L = 2’Id is the rescaling factor, y, 
is the static magnetic exponent, z is the dynamical exponent, and + 0 (long-time 
regime). Assuming now that the effective magnetisations scale in the same way, i.e. 

one obtains 

X f ( K  a, 1 7 9 0 )  = x ; Z ( K ’ ,  at,  LZu), ( 1 1 )  

which is independent of the rescaling factor L - d + y ~ + r  . From equations (4), (7), (lo), 
and ( 1 1 )  one has, in the limit o + 0, 

c(tanh K ’ a ‘ ) / a t = 2 ( c - l ) ( A + B ) ,  (12 )  
which gives the static critical properties, and 

Equation (12)  can be viewed as a renormalisation recursion relation among the 
parameters of the Hamiltonian (1).  It is clear that one cannot determine the full 
renormalisation flow diagram in the K, a, 7) space from this equation alone. Interest- 
ingly, however, the fixed point solution of (12) gives exactly the same critical surface 
as that obtained by using a variational approach for the free energy (Plascak 1984b). 
Such equivalence between MFRG using one- and two-spin clusters and the variational 
approach for the free energy in the pair approximation has already been reported for 
the diluted transverse Ising model (Plascak 1984a). Equation (12 )  can also be used 
to estimate static critical exponents associated with some invariant sets in the K, a, 77 
space. This is done by computing 
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where p can be K or a (note that 7 does not appear in the one-spin cluster calculations) 
and the derivative is taken at the fixed point of the invariant set considered. Similarly, 
the dynamical exponent z, at criticality, is obtained from equation (13). It is interesting 
to note that, in the zero temperature limit, (13) reduces to 

L’ = ~ ~ / ( A , - A ~ ) J F P =  GI/GZIFP, (15) 

where G, is the energy gap of the cluster i. This is a well known result (Hertz 1976). 
It is also worthwhile to mention that the z exponent obtained from (15) is independent 
of the anisotropy, We summarise below the results for the one-, two-, and three- 
dimensional models. 

For the one-dimensional model ( c  = 2) equation (12) presents only zero temperature 
fixed points solutions, as expected. In the Ising limit (7 =0) one has 

a’= R ( R  - l ) / ( R  + l ) ,  R = ( 1  +4a2)”*, (16) 

which is the same renormalisation recursion relation as that given by the SLAC method 
(Jullien et a1 1978, Jullien 1981). The present MFRG approach is then, in the Ising 
limit, identical to the SLAC method for d = 1, when in the latter one considers two-spin 
cell. 

For finite values of 7, it is noted that a,  decreases to zero as 7 + 1 while the critical 
exponents y ,  (= 0.68) and z (= 0.55) are independent of the anisotropy. 

For the two-dimensional model we consider the square lattice, i.e. c = 4 .  For 
completeness, we reproduce in figure 1 the critical temperature as a function of a for 
various values of 7, as obtained from equation (12), for the two-dimensional model. 
The critical temperature decreases as a function of a. At 7 = 0 one has dT,/da + CO 

as a + a,, in agreement with series expansions results. For intermediate values of 7 
the system remains long-range ordered at T=O for a < a,  but, dTJda is finite as 
a + a,. Close to the isotropic Heisenberg limit the long-range order can be broken at 
finite low temperatures producing a kind of re-entrant phenomena. For further details 
on the critical surface see Plascak (1984b). 

a 
Figure 1. Critical temperature k,T,/J as a function 
of a =a/ J for various values of the anisotropy 1) 

for the two-dimensional model. 

2 

30 

2 5  
1 5  

4 

L I 

0 0.5 1 
rl 

Figure 2. Critical exponent y ,  as a function of the 
anisotropy for various values of a for the two- 
dimensional model. 

At zero transverse field this model has been recently studied by using the MFRG 
approach (Plascak 1984~).  It is noted that the critical temperature T, and the critical 
exponent y ,  decrease as a function of the anisotropy. In the isotropic Heisenberg 
limit, the exact results T, = 0 (Mermin and Wagner 1966) and y, = 0 (Polyakov 1975) 
are reproduced even by considering the present simple choice for the clusters. The 
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crossover from Ising to isotropic Heisenberg behaviour is given through a continuous 
variation of y ,  as a function of 7, while the crossover should actually occur all at the 
isotropic Heisenberg point. This continuous variation of yT with 77 is due to having 
only one recursion relation for the parameters of the system. Figure 2 shows the critical 
exponent yT as a function of the anisotropy for various values of a. 

Figure 3 shows the critical exponent y ,  as a function of a for various values of 77. 
As can be seen from this figure, the crossover from finite temperature to zero temperature 
behaviour still remains and it is more pronounced as 7 + 1. At T = 0, the critical 
exponent y ,  (=  0.70) is independent of the anisotropy. The inset shows y ,  as a function 
of 77 at zero transverse field. Another crossover driven by the anisotropy is also apparent 
in this case. In the isotropic Heisenberg limit one has y ,  = 2 at a = 0. 

The results of the dynamical exponent z for the critical slowing down are shown 
in figure 4. Again, at T = 0, z (= 0.43) is independent of the anisotropy. It is interesting 

_ _ _  _ _ _  _ _ _  _ _ -  - - -  :+ 0.8 
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a 
Figure 3. Critical exponent ye as a function of a for 
various values of the anisotropy for the two- 
dimensional model. The broken line represents the 
results at T = 0. The inset shows the critical exponent 
yn as a function of the anisotropy at a = 0. 
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Figure 4. Dynamical exponent z as a function of a 
for various values of the anisotropy for the two- 
dimensional model. The broken line represents the 
results at T = 0. 

to note the crossover from zero temperature to finite temperature behaviour. In this 
case z + 00 as a + 0 for any value of 7. 

The critical points and estimates of critical exponents obtained from the present 
calculations at T=O are shown in table 1 in comparison with exact (if available) or 
other approximated results. For the two-dimensional model, the critical transverse 
field and the exponent s are in good agreement with series expansions results. On the 
other hand, the values of the exponents y ,  and z are poorer, even when compared 
with the SLAC approximation. It is, however, worthwhile to mention that the SLAC 
method for d = 2 considers cell of four spins, while in the present MFRG we consider 
a two-spin cluster. 

Finally, the present approach is easily extended to the three-dimensional model 
( c  = 6 ) .  Similar results as shown in figures 1-4 are obtained in this case. Numerical 
values for the critical transverse field and estimates of critical exponents at T = 0 are 
presented in table 1 in comparison with series expansions results. 

As a final remark, we mention that the unexpected behaviour of the critical 
exponents as shown in figures 2-4 (mainly for 7 =s 1 and a 6 a,) is related to the 
particular re-entrant phenomena observed at low temperatures. Although quite good 
results are obtained in the zero transverse field limit or in the Ising limit (even in the 
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Table 1. Critical points and critical exponents obtained from the present method at T = 0 
in comparison with exact (if available) and other approximated results. 

d =  I d = 2  d = 3  

present, 
SLAC(a) exact(') present S L A C ( ~ )  series'" present series'" 

a, 1.27 1 3.33 2.63 3.08 5.35 5 .  I 
y ,  0.68 1 0.70 0.9 1 1.59 0.707 1.72 
z 0.55 1 0.43 0.546 1 (d )  0.404 I (d )  

s 0.805 1 0.62 0.60 0.63 0.57 0.58 

(a) Jullien et a1 (1978), (b) Penson et a1 (1979), 
1976), Pfeuty (1970). 

Pfeuty and Elliott (1971), (dl exact (Young 1975, Hertz 

neighbourhood of T = 0) this rather pathological behaviour for 7 # 0 and a f 0 could 
be associated to the fact that the MFRG is deficient at low temperatures (Slotte 1984). 
Such peculiar results have been previously obtained by applying the present approach 
to the random field Ising model (Droz et a1 1982) and to the triangular Ising anti- 
ferromagnet (Slotte 1984). 

The author is indebted to Dr R B Stinchcombe and Dr A L Stella for helpful discussions 
and comments. Particular thanks are due to Dr R B Stinchcombe for a critical reading 
of the manuscript. Financial support from Conselho Nacional de Desenvolvimento 
Cientifico e Tecnologico (CNPq, Brazil) and Universidade Federal de Minas Gerais 
(Brazil) is also gratefully acknowledged. 
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